Fault diagnosis for engine air path with neural models and classifier
نویسندگان
چکیده
Fault detection and isolation (FDI) have become one of the most important aspects of automobile design. A new FDI scheme is developed for automotive engines in this paper. The method uses an independent radial basis function (RBF) neural network model to model engine dynamics, and the modelling errors are used to form the basis for residual generation. A dependent RBFNN model is a model which uses output data of a plant as a target output then use it to train the neural network, while, The independent RBFNN model is a higher accuracy than the dependent model and the errors can be detected by this model, because this model does not dependent on the output of the plant and it will use its output as a target, so if any faults in the plant will be not effect in the model and this faults will be detected easily and clearly. Furthermore, another RBF network is used as a fault classifier to isolate different faults from the modelling errors. The method is developed and the performance assessed using the engine benchmark, the Mean Value Engine Model (MVEM) with Matlab/Simulink. Five faults have been simulated on the MVEM, including three sensor faults, one component fault and one actuator fault. The three sensor faults considered are 10-20% changes superimposed on the measured outputs of manifold pressure, manifold temperature and crankshaft speed sensors; one component fault considered is air leakage in intake manifold; the actuator fault considered is the malfunction of fuel injector. The simulation results show that all the simulated faults can be clearly detected and isolated in dynamic conditions throughout the engine operating range.
منابع مشابه
1 Engine Air Path Fault Diagnosis Using Adaptive Neural Classifier
This paper presents a new method for on-board fault diagnosis for the air-path of spark ignition (SI) engines. The method uses an adaptive radial basis function (RBF) neural network to classify pre-defined possible faults from engine measurements to report the type and size of the fault. The RBF fault classifier adapts its widths and weights to model the time-varying dynamics of the engine and ...
متن کاملDeveloping A Fault Diagnosis Approach Based On Artificial Neural Network And Self Organization Map For Occurred ADSL Faults
Telecommunication companies have received a great deal of research attention, which have many advantages such as low cost, higher qualification, simple installation and maintenance, and high reliability. However, the using of technical maintenance approaches in Telecommunication companies could improve system reliability and users' satisfaction from Asymmetric digital subscriber line (ADSL) ser...
متن کاملA Neural Network Fault Diagnosis Method applied for Faults in Intake System of an SI Engine
One essential part of automated diagnosis systems for SI engines is due to elements of air path system. The diagnosis task is getting more challenging by including Exhaust Gas Recirculation (EGR) which its transient effects on temperament complexity of the air-path system are quite significant. The faults occur in this subsystem can result in deviation in air-fuel ratio, which causes increased ...
متن کاملA DWT and SVM based method for rolling element bearing fault diagnosis and its comparison with Artificial Neural Networks
A classification technique using Support Vector Machine (SVM) classifier for detection of rolling element bearing fault is presented here. The SVM was fed from features that were extracted from of vibration signals obtained from experimental setup consisting of rotating driveline that was mounted on rolling element bearings which were run in normal and with artificially faults induced conditio...
متن کاملApplication of Radial Basis Neural Networks in Fault Diagnosis of Synchronous Generator
This paper presents the application of radial basis neural networks to the development of a novel method for the condition monitoring and fault diagnosis of synchronous generators. In the proposed scheme, flux linkage analysis is used to reach a decision. Probabilistic neural network (PNN) and discrete wavelet transform (DWT) are used in design of fault diagnosis system. PNN as main part of thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012